GPYS
Purpose
function value, gradient and Hessian of polynomial yield surface
Synopsis
[f,g,h] = GPYS (GPYSC,xyz,ScVec)
Description
GPYS function value, gradient and Hessian of polynomial yield surface
[F,G,H] = GPYS (GPYSC,XYZ,SCVEC)
the function determines the value F(X,Y,Z), the gradient G(X,Y,Z), and
the Hessian matrix (2nd derivative) H(X,Y,Z) of F at a point XYZ
for a general polynomial yield surface with coefficients GPYSC
SCVEC is a scale vector for the variables X, Y, and Z
G = the gradient (normal) of the yield surface = [dF/dX; dF/dY; dF/dZ]
H = the Hessian (2nd deriv) of the yield surface = dG/dXYZ
= [d2(F)/d(X)^2 d2(F)/d(X)d(Y) d2(F)/d(X)d(Z);
d2(F)/d(Y)d(X) d2(F)/d(Y)^2 d2(F)/d(Y)d(Z);
d2(F)/d(Z)d(X) d2(F)/d(Z)d(Y) d2(F)/d(Z)^2]
The coefficients of the polynomial yield surface are specified as follows
general 3d case
GPYSC = [d1 a1 b1 c1; d2 a2 b2 c2; d3 a3 b3 c3; ...]
for F = Sum_i (di*(X^ai)*(Y^bi)*(Z^ci))
general 2d case
GPYSC = [c1 a1 b1; c2 a2 b2; c3 a3 b3; ...]
for F = Sum_i (ci*(X^ai)*(Y^bi))
Cross-Reference Information
This function calls:
- BInel2dFrm_wEPLHNMYS 2d elasto-plastic, linear hardening basic frame element